
www.mymathscloud.com

AS Maths Formulae Sheet

© MyMathsCloud

	Shapes
Area of Triangle	$\frac{1}{2}$ x base x height
Area of Parallelogram	base x height
Area of Rectangle	$length \times width$
Area of Trapezoid	$\frac{1}{2}$ (sum of parallel sides) x height
Circumference & Area: Circle Cuboid Surface area	$c = 2\pi r, A = \pi r^2$ $SA = 2xy + 2xz + 2yz$
	Where x , y , and z are side lengths
Cuboid Volume	V = xyz
Cylinder Surface Area	where x, y, and z are side lengths $SA = 2\pi rh + 2\pi r^2$
-,	Note: Curved part: $2\pi rh$
Cylinder Volume	$V = \pi r^2 h$
Cone Surface Area	$SA = \pi r l + \pi r^2$ Note: Curved part: $\pi r l$
	where <i>l</i> is slant length
Cone Volume	$V = \frac{1}{3}\pi r^2 h$
Sphere Surface Area	$SA = 4\pi r^2$
	Note: Hemisphere $2\pi r^2 + \pi r^2 = 3\pi r^2$ $v = \frac{4}{3}\pi r^3$
Sphere Volume	$v = \frac{1}{3}\pi r^3$
	Note: Hemisphere= $\frac{2}{3}\pi r^3$
Prism Volume	V = Area of cross section x height
Pyramid Volume	$V = \frac{1}{3} \times base area \times h$
	Indices
Multiplication	$x^a \times x^b = x^{a+b}$
	$(x^a)^b = x^{ab}$
Division	$(cx - y^{a})^{a} = c^{a} x^{aa} y^{ba}$
	$x^a \div x^b = \frac{1}{x^b} = x^{a-b}$
Negative Powers	$x^{a} \times x^{b} = x^{a+b}$ $(x^{a})^{b} = x^{ab}$ $(cx^{a}y^{b})^{d} = c^{d}x^{ad}y^{bd}$ $x^{a} + x^{b} = \frac{x^{a}}{x^{b}} = x^{a-b}$ $x^{-n} = \frac{1}{x^{n}}$ $\left(\frac{x}{y}\right)^{n} = \frac{x^{n}}{y^{n}}$ $\left(\frac{x}{y}\right)^{-n} = \frac{y^{n}}{x^{n}}$ $a^{\frac{n}{m}} = \begin{cases} (a^{\frac{n}{m}})^{\frac{n}{m}} = (\sqrt[n]{a^{n}})^{\frac{n}{m}} \\ (a^{\frac{n}{m}})^{\frac{n}{m}} = \sqrt[n]{a^{n}} \end{cases}$
Fractions	$(x)^n - x^n$
	$\left(\frac{1}{y}\right)^{n} = \frac{1}{y^{n}}$
	$\left(\frac{x}{y}\right)^{-n} = \frac{y^n}{x^n}$
Rational Powers	$\left(\frac{1}{n} \right)^n \left(\frac{1}{n} \right)^n$
	$a^{\frac{n}{m}} = \begin{cases} (a^m)^n = (\sqrt{a}) \\ 1 & m \end{cases}$
	$((u)^m = vu)$
Binomial Theorem:	Series $(a+b)^n$
integer powers	$ \begin{array}{c} (a+b)^n \\ = a^n + \binom{n}{1} a^{n-1} b + \dots + \binom{n}{r} a^{n-r} b^r + \dots + b^n \\ \binom{n}{r} = nc_r = \frac{n!}{(n-r)! r!} \end{array} $
Binomial Coefficient	$\binom{n}{n} = nc_n = \frac{n!}{n!}$
Straight Line: Equation	 Geometry Slope intercept form: y = mx + c
(gradient means slope)	• General form: $ax + by + d = 0$
Parallel⇒ same slope	 Point slope form: y − y₁ = m(x − x₁)
Perpendicular⇒ "flip fraction and change the sign"	
(slopes multiply to make -1)	
Straight Line: Gradient	$m = \frac{y_2 - y_1}{x_2 - x_1}$
Distance between 2 points	$m = \frac{y_{2-}y_1}{x_{2-}x_1}$ $\sqrt{(x_{2-}x_1)^2 + (y_{2-}y_1)^2}$
$(x_1, y_1), (x_2, y_2)$	
Coordinates of midpoint of $(x_1, y_1), (x_2, y_2)$	$\left(\frac{x_{1+}x_2}{2}, \frac{y_{1+}y_2}{2}\right)$
Circles	$(x-a)^2 + (y-b)^2 = r^2$
	centre (a, b), radius r
Quadratic Function:	Quadratics $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, a \neq 0$
Solutions to	$x = \frac{3 \pm \sqrt{2} - 4a^2}{2a}, a \neq 0$
$ax^2 + bx + c = 0$	b
Quadratic Function: Axis of Symmetry	$f(x) = x^2 + bx + c \Longrightarrow x = -\frac{b}{2a}$
Quadratic Function:	$\Delta = b^2 - 4ac$
	 > 0 (2 real distinct roots) = 0 (2 real repeated (double roots))
Discriminant	 = 0 (2real repeated/double roots) < 0 (no real roots)
Discriminant Completing The Square	 = 0 (2real repeated/double roots) < 0 (no real roots)
Discriminant Completing The Square $ax^2 \pm bx + c = 0$	• = 0 (2real repeated/double roots) • < 0 (no real roots) $a\left(x \pm \frac{b}{2a}\right)^2 + c - \frac{b^2}{4a}$
Discriminant Completing The Square $ax^2 \pm bx + c = 0$	• = 0 (2real repeated/double roots) • < 0 (no real roots) $a\left(x \pm \frac{b}{2a}\right)^2 + c - \frac{b^2}{4a}$ $c - \frac{b^2}{4a}$
Discriminant Completing The Square $ax^2 \pm bx + c = 0$ Max/Min Value Exponential and Logarithmic	• = 0 (2real repeated/double roots) • < 0 (no real roots) $a\left(x \pm \frac{b}{2a}\right)^2 + c - \frac{b^2}{4a}$ $\frac{c - \frac{b^2}{4a}}{a^x = e^{x \ln a}},$
Discriminant Completing The Square $ax^2 \pm bx + c = 0$ Max/Min Value Exponential and Logarithmic	• = 0 (2real repeated/double roots) • < 0 (no real roots) $a\left(x \pm \frac{b}{2a}\right)^2 + c - \frac{b^2}{4a}$ $\frac{c - \frac{b^2}{4a}}{a}$ $a^x = e^{x \ln a},$ $\log_a a^x = x = a^{\log_a x}$
Discriminant Completing The Square $ax^2 \pm bx + c = 0$ Max/Min Value Exponential and Logarithmic Functions	• = 0 (2real repeated/double roots) • < 0 (no real roots) $a\left(x \pm \frac{b}{2a}\right)^2 + c - \frac{b^2}{4a}$ $\frac{c - \frac{b^2}{4a}}{a}$ $a^x = e^{x \ln a},$ $\log_a a^x = x = a^{\log_a x}$ where, $a, x > 0, a \neq 1$
Discriminant Completing The Square $ax^2 \pm bx + c = 0$ Max/Min Value Exponential and Logarithmic Functions Exponentials & Logarithm	$\begin{array}{ll} \bullet &= 0 \left(2 {\rm real repeated/double roots} \right) \\ \bullet &< 0 \left({\rm no \ real roots} \right) \\ \hline & a \left({x \pm \frac{b}{2a}} \right)^2 + c - \frac{b^2}{4a} \\ \hline & c - \frac{b^2}{4a} \\ \hline & a^x = e^{x \ln a}, \\ \log_a a^x = x = a^{\log_a x} \\ {\rm where}, a, x > 0, a \neq 1 \\ \bullet & \log_a b \rightleftharpoons \log_a b^c \\ \bullet & \log_a b = c \Leftrightarrow a^c = b, a, b, > 0, a \neq 1 \end{array}$
Discriminant Completing The Square $ax^2 \pm bx + c = 0$ Max/Min Value Exponential and Logarithmic Functions Exponentials & Logarithm	$\begin{array}{ll} \bullet &= 0 \ (2real repeated/double roots) \\ \bullet &< 0 \ (no \ real roots) \\ \hline & a \left(x \pm \frac{b}{2a}\right)^2 + c - \frac{b^2}{4a} \\ \hline & c - \frac{b^2}{4a} \\ \hline & a^x = e^{x \ln a}, \\ \log_a a^x = x = a^{\log_a x} \\ where, \ a, x > 0, a \neq 1 \\ \bullet & \log_a b \Leftrightarrow \log_a b^c \\ \bullet & \log_a b c \Leftrightarrow a^c = b, a, b, > 0, a \neq 1 \\ \bullet & \log_a b + \log_a c \Leftrightarrow \log_a bc \end{array}$
Discriminant Completing The Square $ax^2 \pm bx + c = 0$ Max/Min Value Exponential and Logarithmic Functions Exponentials & Logarithm	$\begin{array}{l} \bullet &= 0 \left(2 \mathrm{real} \ \mathrm{repeated/double\ roots} \right) \\ \bullet &< 0 \ \mathrm{(no\ real\ roots)} \\ \end{array} \\ \hline \begin{array}{r} a \left(x \pm \frac{b}{2a} \right)^2 + c - \frac{b^2}{4a} \\ \hline c - \frac{b^2}{4a} \\ \hline c - \frac{b^2}{4a} \\ \hline a^x = e^{x \ \mathrm{Ina}}, \\ \log_a a^x = x = a^{\log_a x} \\ \mathrm{where}, a, x > 0, a \neq 1 \\ \end{array} \\ \hline \begin{array}{r} \bullet \ c \log_a b \Leftrightarrow \log_a b^c \\ \bullet \ \log_a b = c \Leftrightarrow a^c = b, a, b, > 0, a \neq 1 \\ \bullet \ \log_a b + \log_a c \Leftrightarrow \log_a b^c \\ \bullet \ \log_a b - \log_a c \Leftrightarrow \log_a b^c \\ \bullet \ \log_a b - \log_a c \Leftrightarrow \log_a b^c \\ \end{array} \\ \end{array}$
Discriminant Completing The Square $ax^2 \pm bx + c = 0$ Max/Min Value Exponential and Logarithmic Functions Exponentials & Logarithm	$\begin{array}{l} \bullet &= 0 \left(2 \mathrm{real} \ \mathrm{repeated/double\ roots} \right) \\ \bullet &< 0 \ \mathrm{(no\ real\ roots)} \\ \end{array} \\ \hline & a \left(x \pm \frac{b}{2a} \right)^2 + c - \frac{b^2}{4a} \\ \hline & c - \frac{b^2}{4a} \\ \hline & c - \frac{b^2}{4a} \\ \hline & a^x = e^{x \ln a}, \\ \log_a a^x = x = a^{\log_a x} \\ \mathrm{where,} \ a, x > 0, a \neq 1 \\ \bullet \ c \log_a b \Rightarrow \log_a b^c \\ \bullet \ \log_a b \Rightarrow \log_a b^c \\ \bullet \ \log_a b \Rightarrow \log_a c \Rightarrow \log_a \frac{b}{c} \\ \bullet \ \log_a b = \log_a c \Rightarrow \log_a \frac{b}{c} \\ \bullet \ \log_a b \Rightarrow \frac{\log_a b}{\log_c a} \\ \end{array}$
Discriminant Completing The Square $ax^2 \pm bx + c = 0$ Max/Min Value Exponential and Logarithmic Functions Exponentials & Logarithm	$\begin{array}{l} \bullet &= 0 \left(2 \mathrm{real} \ \mathrm{repeated/double\ roots} \right) \\ \bullet &< 0 \ \mathrm{(no\ real\ roots)} \\ \end{array} \\ \hline \begin{array}{r} a \left(x \pm \frac{b}{2a} \right)^2 + c - \frac{b^2}{4a} \\ \hline c - \frac{b^2}{4a} \\ \hline c - \frac{b^2}{4a} \\ \hline a^x = e^{x \ \mathrm{Ina}}, \\ \log_a a^x = x = a^{\log_a x} \\ \mathrm{where}, a, x > 0, a \neq 1 \\ \end{array} \\ \hline \begin{array}{r} \bullet \ c \log_a b \Leftrightarrow \log_a b^c \\ \bullet \ \log_a b = c \Leftrightarrow a^c = b, a, b, > 0, a \neq 1 \\ \bullet \ \log_a b + \log_a c \Leftrightarrow \log_a b^c \\ \bullet \ \log_a b - \log_a c \Leftrightarrow \log_a b^c \\ \bullet \ \log_a b - \log_a c \Leftrightarrow \log_a b^c \\ \end{array} \\ \end{array}$
Discriminant Completing The Square $ax^2 \pm bx + c = 0$ Max/Min Value Exponential and Logarithmic Functions Exponentials & Logarithm	$\begin{array}{l} \bullet &= 0 \left(2 \mathrm{real} \ \mathrm{repeated/double \ roots} \right) \\ \bullet &< 0 \ \mathrm{(no\ real\ roots)} \\ \end{array} \\ \hline & a \left(x \pm \frac{b}{2a} \right)^2 + c - \frac{b^2}{4a} \\ \hline & c - \frac{b^2}{4a} \\ \hline & c - \frac{b^2}{4a} \\ \hline & a^x = e^{x \ \mathrm{In} a}, \\ \log_a a^x = x = a^{\log_a x} \\ \mathrm{where}, \ a, x > 0, a \neq 1 \\ \hline & c \ \log_a b \Rightarrow \log_a b^c \\ \bullet \ \log_a b = c \Leftrightarrow a^c = b, a, b, > 0, a \neq 1 \\ \hline & \log_a b + \log_a c \Leftrightarrow \log_a \frac{b}{c} \\ \bullet \ \log_a b - \log_a c \Leftrightarrow \log_a \frac{b}{c} \\ \bullet \ \log_a b = \log_a c \Leftrightarrow \log_a \frac{b}{c} \\ \bullet \ \log_a b \Rightarrow \frac{\log_a b}{\log_c a} \\ \bullet \ \log_a b = \log_a c \Rightarrow \log_a \frac{b}{c} \\ \bullet \ \log_a b \Rightarrow \frac{\log_a b}{\log_c a} \\ \bullet \ \log_a b \Rightarrow \frac{\log_a b}{\log_c a} \\ \bullet \ Solving \ a \ \mathrm{exponethal} \ \mathrm{in\ substitution\ if\ 3 \ terms} \\ \bullet \ Solving \ a \ \mathrm{exponethal} \ \mathrm{in\ both\ sides} \end{array}$
Discriminant Completing The Square $ax^2 \pm bx + c = 0$ Max/Min Value Exponential and Logarithmic Functions Exponentials & Logarithm	$\begin{array}{l} \bullet &= 0 \left(2 \mathrm{real} \ \mathrm{repeated} / \mathrm{double\ roots} \right) \\ \bullet &< 0 \ (\mathrm{no\ real\ roots}) \\ \hline & a \left(x \pm \frac{b}{2a} \right)^2 + c - \frac{b^2}{4a} \\ \hline & c \log_a k = x = a^{\log_a x} \\ \mathrm{where,} \ a, x > 0, a \neq 1 \\ \hline & \log_a b \Rightarrow \log_a b^c \\ \bullet \ \log_a b + \log_a c \Leftrightarrow \log_a bc \\ \bullet \ \log_a b + \log_a c \Leftrightarrow \log_a b_c \\ \bullet \ \log_a b + \log_a c \Leftrightarrow \log_a b_c \\ \bullet \ \log_a b + \log_a c \Leftrightarrow \log_a b_c \\ \bullet \ \log_a b = \log_a c \Leftrightarrow \log_a b_c \\ \bullet \ \log_a b = \log_a c \Leftrightarrow \log_a b_c \\ \bullet \ \log_a b \Rightarrow \log_a c \Leftrightarrow \log_a b \\ \bullet \ \log_a b \Rightarrow \log_a c \Leftrightarrow \log_a b \\ \bullet \ \log_a b \Rightarrow \log_a c \Leftrightarrow \log_a b \\ \bullet \ \log_a b \Rightarrow \log_a c \Leftrightarrow \log_a b \\ \bullet \ \log_a b \Rightarrow \log_a c \Leftrightarrow \log_a b \\ \bullet \ \log_a b \Rightarrow \log_a b \\ \bullet \ \log_a b \Rightarrow \log_a b \\ \bullet \ \log_a b \Rightarrow \log_a b \\ \bullet \ \delta = 0 \\ \bullet$
Discriminant Completing The Square $ax^2 \pm bx + c = 0$ Max/Min Value Exponential and Logarithmic Functions Exponentials & Logarithm	$\begin{array}{l} \bullet &= 0 \left(2 \mathrm{real} \ \mathrm{repeated/double \ roots} \right) \\ \bullet &< 0 \ \mathrm{(no\ real\ roots)} \\ \end{array} \\ \hline & a \left(x \pm \frac{b}{2a} \right)^2 + c - \frac{b^2}{4a} \\ \hline & c - \frac{b^2}{4a} \\ \hline & c - \frac{b^2}{4a} \\ \hline & a^x = e^{x \ \mathrm{In} a}, \\ \log_a a^x = x = a^{\log_a x} \\ \mathrm{where}, \ a, x > 0, a \neq 1 \\ \hline & c \ \log_a b \Rightarrow \log_a b^c \\ \bullet \ \log_a b = c \Leftrightarrow a^c = b, a, b, > 0, a \neq 1 \\ \hline & \log_a b + \log_a c \Leftrightarrow \log_a \frac{b}{c} \\ \bullet \ \log_a b - \log_a c \Leftrightarrow \log_a \frac{b}{c} \\ \bullet \ \log_a b = \log_a c \Leftrightarrow \log_a \frac{b}{c} \\ \bullet \ \log_a b \Rightarrow \frac{\log_a b}{\log_c a} \\ \bullet \ \log_a b = \log_a c \Rightarrow \log_a \frac{b}{c} \\ \bullet \ \log_a b \Rightarrow \frac{\log_a b}{\log_c a} \\ \bullet \ \log_a b \Rightarrow \frac{\log_a b}{\log_c a} \\ \bullet \ Solving \ a \ \mathrm{exponethal} \ \mathrm{in\ substitution\ if\ 3 \ terms} \\ \bullet \ Solving \ a \ \mathrm{exponethal} \ \mathrm{in\ both\ sides} \end{array}$
Discriminant Completing The Square $ax^2 \pm bx + c = 0$ Max/Min Value Exponential and Logarithmic Functions Exponentials & Logarithm Rules` Transformations	$\begin{array}{lll} \bullet &= 0 \left(2 {\rm real repeated/double roots} \right) \\ \bullet &< 0 \left({\rm no \ real roots} \right) \\ \hline & a \left(x \pm \frac{b}{2a} \right)^2 + c - \frac{b^2}{4a} \\ \hline & c - \frac{b^2}{4a} \\ \hline & c - \frac{b^2}{4a} \\ \hline & a^x = e^{x \ Ina}, \\ I \ Og_a x = x = a^{log_a} x \\ where, a, x > 0, a \neq 1 \\ \hline & log_a b \Leftrightarrow log_a b^c \\ \bullet & log_a b = c \Leftrightarrow a^c = b, a, b, > 0, a \neq 1 \\ \hline & log_a b + log_a c \Leftrightarrow log_a bc \\ \bullet & log_a b = \log_a c \Leftrightarrow log_a \frac{b}{c} \\ \hline & log_a b \Rightarrow \frac{log_a c}{0 g_a c} \\ \bullet & log_a b \Rightarrow \log_a c \Leftrightarrow log_a \frac{b}{c} \\ \bullet & log_a b \Rightarrow \log_a c \Leftrightarrow log_a \frac{b}{c} \\ \bullet & log_a b \Rightarrow \log_a c \Leftrightarrow log_a \frac{b}{c} \\ \bullet & log_a b \Rightarrow \log_a c \Rightarrow log_a c \Rightarrow log_a b \\ \bullet & log_a a b \Rightarrow \log_a c \Rightarrow log_a b \\ \bullet & log_a a b \Rightarrow \log_a c \Rightarrow log_a b \\ \bullet & log_a a \Rightarrow log_a c \Rightarrow log_a b \\ \bullet & log_a a \Rightarrow log_a c \Rightarrow log_a b \\ \bullet & log_a a \Rightarrow log_a c \Rightarrow log_a b \\ \bullet & log_a a \Rightarrow log_a c \Rightarrow log_a b \\ \bullet & log_a a \Rightarrow log_a c \Rightarrow log_a b \\ \bullet & log_a a \Rightarrow log_a c \Rightarrow log_a b \\ \bullet & log_a a \Rightarrow log_a c \Rightarrow log_a b \\ \bullet & log_a a \Rightarrow log_a c \Rightarrow log_a b \\ \bullet & log_a a \Rightarrow log_a c \Rightarrow log_a b \\ \bullet & log_a a \Rightarrow log_a c \Rightarrow log_a b \\ \bullet & log_a a \Rightarrow log_a c \Rightarrow log_a b \\ \bullet & log_a a \Rightarrow log_a c \Rightarrow log_a b \\ \bullet & log_a a \Rightarrow log_a c \Rightarrow log_a b \\ \bullet & log_a a \Rightarrow log_a c \Rightarrow log_a b \\ \bullet & log_a a \Rightarrow log_a c \Rightarrow log_a b \\ \bullet & log_a a \Rightarrow log_a b \\ \bullet & log_a a \Rightarrow log_a c \Rightarrow log_a b \\ \bullet & log_a a \Rightarrow log_a c \Rightarrow log_a b \\ \bullet & log_a a \Rightarrow log_a a \Rightarrow log_a b \\ \bullet & log_a a \Rightarrow log_a a \\ \bullet & log_a a \Rightarrow log_a \\ \bullet & log_a a \Rightarrow log_a \\ \bullet & log_a a \\ \bullet & log_a a \Rightarrow $
Discriminant Completing The Square $ax^2 \pm bx + c = 0$ Max/Min Value Exponential and Logarithmic Functions Exponentials & Logarithm Rules' Transformations af(bx + c) + d	$\begin{array}{l} \bullet &= 0 \left(2 \text{real repeated/double roots} \right) \\ \bullet &< 0 \left(\text{no real roots} \right) \\ \hline & a \left(x \pm \frac{b}{2a} \right)^2 + c - \frac{b^2}{4a} \\ \hline & a^x = e^{x \ln a}, \\ \log_a x = x = a^{\log_a x}, \\ \text{where, } a, x > 0, a \neq 1 \\ \hline & \log_a b \Rightarrow \log_a b^c \\ \bullet & \log_a b = c \Leftrightarrow a^c = b, a, b, > 0, a \neq 1 \\ \bullet & \log_a b + \log_a c \Leftrightarrow \log_a \frac{b}{c} \\ \bullet & \log_a b = \log_a c \Leftrightarrow \log_a \frac{b}{c} \\ \bullet & \log_a b \Rightarrow \log_a c \Leftrightarrow \log_a \frac{b}{c} \\ \bullet & \log_a b \Rightarrow \log_a c \Leftrightarrow \log_a \frac{b}{c} \\ \bullet & \log_a b \Rightarrow \log_a c \Leftrightarrow \log_a \frac{b}{c} \\ \bullet & \log_a b \Rightarrow \log_a c \Leftrightarrow \log_a \frac{b}{c} \\ \bullet & \log_a b \Rightarrow \log_a c \Leftrightarrow \log_a \frac{b}{c} \\ \bullet & \log_a b \Rightarrow \log_a c \Rightarrow \log_a b dc \\ \bullet & \log_a b \Rightarrow \log_a c \Rightarrow \log_a b dc \\ \bullet & \log_a a \Rightarrow \log_a c \Rightarrow \log_a b dc \\ \bullet & \log_a a \Rightarrow \log_a c \Rightarrow \log_a b dc \\ \bullet & \log_a c \Rightarrow \log_a b dc \\ \bullet & \log_a c \Rightarrow \log_a b dc \\ \bullet & \log_a c \Rightarrow \log_a b dc \\ \bullet & \log_a c \Rightarrow \log_a b dc \\ \bullet & \log_a c \Rightarrow \log_a b dc \\ \bullet & \log_a c \Rightarrow \log_a b dc \\ \bullet & \log_a c \Rightarrow \log_a b dc \\ \bullet & \log_a c \Rightarrow \log_a b dc \\ \bullet & \log_a c \Rightarrow \log_a b dc \\ \bullet & \log_a c \Rightarrow \log_a b dc \\ \bullet & \log_a c \Rightarrow \log_a b dc \\ \bullet & \log_a c \Rightarrow \log_a b dc \\ \bullet & \log_a c \Rightarrow \log_a b dc \\ \bullet & \log_a c \Rightarrow \log_a b dc \\ \bullet & \log_a c \Rightarrow \log_a b dc \\ \bullet & \log_a c \Rightarrow \log_a b dc \\ \bullet & \log_a c \Rightarrow \log_a b dc \\ \bullet & \log_a c \Rightarrow \log_a b dc \\ \bullet & \log_a b dc \\ \bullet & \log_a b dc \\ \bullet & \log_a c \Rightarrow \log_a b dc \\ \bullet & \log_a b dc \\ \bullet & \log_a c \Rightarrow \log_a b dc \\ \bullet & \log_a b dc \\ \bullet$
Discriminant Completing The Square $ax^2 \pm bx + c = 0$ Max/Min Value Exponential and Logarithmic Functions Exponentials & Logarithm Rules' Transformations $a_f(bx + c) + d$ "anything in a bracket affects x	$\begin{array}{l} \bullet &= 0 \left(2 \mathrm{real} \ \mathrm{repeated/double\ roots} \right) \\ \bullet &< 0 \ \mathrm{(no\ real\ roots)} \\ \end{array} \\ \begin{array}{l} a \left(x \pm \frac{b}{2a} \right)^2 + c - \frac{b^2}{4a} \\ \hline c - \frac{b^2}{4a} \\ \hline a^x = e^{x \ln a}, \\ \log_a a^x = x = a^{\log_a x} \\ \mathrm{where}, a, x > 0, a \neq 1 \\ \end{array} \\ \begin{array}{l} \bullet \ c \ \log_a b \Rightarrow \log_a b^c \\ \bullet \ \log_a b = c \Leftrightarrow a^c = b, a, b, > 0, a \neq 1 \\ \hline \bullet \ \log_a b = \log_a c \Leftrightarrow \log_a b^c \\ \bullet \ \log_a b = \log_a c \Leftrightarrow \log_a b^c \\ \bullet \ \log_a b = \log_a c \Leftrightarrow \log_a b^c \\ \bullet \ \log_a b = \log_a c \Leftrightarrow \log_a b^c \\ \bullet \ \log_a b = \log_a c \Leftrightarrow \log_a b^c \\ \bullet \ \log_a b = \log_a c \Rightarrow \log_a b^c \\ \bullet \ \log_a b = \log_a c \Rightarrow \log_a b^c \\ \bullet \ \log_a b = \log_a c \Rightarrow \log_a b^c \\ \bullet \ \log_a b = \log_a c \Rightarrow \log_a b^c \\ \bullet \ \log_a b = \log_a c \Rightarrow \log_a b^c \\ \bullet \ \log_a b = \log_a c \Rightarrow \log_a b^c \\ \bullet \ \log_a b = \log_a c \Rightarrow \log_a b^c \\ \bullet \ \log_a b = \log_a c \Rightarrow \log_a b^c \\ \bullet \ \log_a b = \log_a c \Rightarrow \log_a b^c \\ \bullet \ \log_a b = \log_a c \Rightarrow \log_a b^c \\ \bullet \ \log_a b = \log_a c \Rightarrow \log_a b^c \\ \bullet \ \log_a b = \log_a c \Rightarrow \log_a b^c \\ \bullet \ \log_a b = \log_a c \Rightarrow \log_a b^c \\ \bullet \ \log_a b = \log_a c \Rightarrow \log_a b^c \\ \bullet \ \log_a b = \log_a c \Rightarrow \log_a b^c \\ \bullet \ \log_a b = \log_a c \Rightarrow \log_a b^c \\ \bullet \ \log_a b = \log_a c \Rightarrow \log_a b^c \\ \bullet \ \log_a b = \log_a b = \log_a b^c \\ \bullet \ (\log_a b^c) \\ \bullet \ (\log_a b^c $
Discriminant Completing The Square $ax^2 \pm bx + c = 0$ Max/Min Value Exponential and Logarithmic Functions Exponentials & Logarithm Rules` Transformations	$\begin{array}{l} \bullet &= 0 \left(2 \text{real repeated/double roots} \right) \\ \bullet &< 0 \left(\text{no real roots} \right) \\ \hline & a \left(x \pm \frac{b}{2a} \right)^2 + c - \frac{b^2}{4a} \\ \hline & a^x = e^{x \ln a}, \\ \log_a x = x = a^{\log_a x}, \\ \text{where, } a, x > 0, a \neq 1 \\ \hline & \log_a b \Rightarrow \log_a b^c \\ \bullet & \log_a b = c \Leftrightarrow a^c = b, a, b, > 0, a \neq 1 \\ \bullet & \log_a b + \log_a c \Leftrightarrow \log_a \frac{b}{c} \\ \bullet & \log_a b = \log_a c \Leftrightarrow \log_a \frac{b}{c} \\ \bullet & \log_a b \Rightarrow \log_a c \Leftrightarrow \log_a \frac{b}{c} \\ \bullet & \log_a b \Rightarrow \log_a c \Leftrightarrow \log_a \frac{b}{c} \\ \bullet & \log_a b \Rightarrow \log_a c \Leftrightarrow \log_a \frac{b}{c} \\ \bullet & \log_a b \Rightarrow \log_a c \Leftrightarrow \log_a \frac{b}{c} \\ \bullet & \log_a b \Rightarrow \log_a c \Leftrightarrow \log_a \frac{b}{c} \\ \bullet & \log_a b \Rightarrow \log_a c \Rightarrow \log_a b dc \\ \bullet & \log_a b \Rightarrow \log_a c \Rightarrow \log_a b dc \\ \bullet & \log_a a \Rightarrow \log_a c \Rightarrow \log_a b dc \\ \bullet & \log_a a \Rightarrow \log_a c \Rightarrow \log_a b dc \\ \bullet & \log_a c \Rightarrow \log_a b dc \\ \bullet & \log_a c \Rightarrow \log_a b dc \\ \bullet & \log_a c \Rightarrow \log_a b dc \\ \bullet & \log_a c \Rightarrow \log_a b dc \\ \bullet & \log_a c \Rightarrow \log_a b dc \\ \bullet & \log_a c \Rightarrow \log_a b dc \\ \bullet & \log_a c \Rightarrow \log_a b dc \\ \bullet & \log_a c \Rightarrow \log_a b dc \\ \bullet & \log_a c \Rightarrow \log_a b dc \\ \bullet & \log_a c \Rightarrow \log_a b dc \\ \bullet & \log_a c \Rightarrow \log_a b dc \\ \bullet & \log_a c \Rightarrow \log_a b dc \\ \bullet & \log_a c \Rightarrow \log_a b dc \\ \bullet & \log_a c \Rightarrow \log_a b dc \\ \bullet & \log_a c \Rightarrow \log_a b dc \\ \bullet & \log_a c \Rightarrow \log_a b dc \\ \bullet & \log_a c \Rightarrow \log_a b dc \\ \bullet & \log_a c \Rightarrow \log_a b dc \\ \bullet & \log_a b dc \\ \bullet & \log_a b dc \\ \bullet & \log_a c \Rightarrow \log_a b dc \\ \bullet & \log_a b dc \\ \bullet & \log_a c \Rightarrow \log_a b dc \\ \bullet & \log_a b dc \\ \bullet$
Discriminant Completing The Square $ax^2 \pm bx + c = 0$ Max/Min Value Exponential and Logarithmic Functions Exponentials & Logarithm Rules' Transformations af(bx + c) + d "anything in a bracket affects x	$\begin{array}{l} \bullet &= 0 \left(2 \mathrm{real} \ \mathrm{repeated/double\ roots} \right) \\ \bullet &< 0 \ (\mathrm{no\ real\ roots}) \\ \hline & a \left(x \pm \frac{b}{2a} \right)^2 + c - \frac{b^2}{4a} \\ \hline & c - \frac{b^2}{4a} \\ \hline & c - \frac{b^2}{4a} \\ \hline & a^x = e^{x \ \mathrm{lna}}, \\ \log_a a^x = x = a^{\log_a x} \\ \mathrm{where,} \ a, x > 0, a \neq 1 \\ \hline & c \ \log_a b \Leftrightarrow \log_a b^c \\ \bullet \ \log_a b = c \Leftrightarrow a^c = b, a, b, > 0, a \neq 1 \\ \hline & \log_a b + \log_a c \Leftrightarrow \log_a b^c \\ \bullet \ \log_a b - \log_a c \Leftrightarrow \log_a b^c \\ \bullet \ \log_a b - \log_a c \Leftrightarrow \log_a b^c \\ \bullet \ \log_a b - \log_a c \Leftrightarrow \log_a b^c \\ \bullet \ \log_a b - \log_a c \Leftrightarrow \log_a b^c \\ \bullet \ \log_a b = \log_a c \Rightarrow \log_a b^c \\ \bullet \ (\log_a b = \log_a c \Rightarrow \log_a b^c \\ \bullet \ (\log_a b = \log_a c \Rightarrow \log_a b^c \\ \bullet \ (\log_a b = \log_a c \Rightarrow \log_a b^c \\ \bullet \ (\log_a b = \log_a c \Rightarrow \log_a b^c \\ \bullet \ (\log_a b = \log_a c \Rightarrow \log_a b^c \\ \bullet \ (\log_a b = \log_a c \Rightarrow \log_a b^c \\ \bullet \ (\log_a b = \log_a c \Rightarrow \log_a b^c \\ \bullet \ (\log_a b = \log_a c \Rightarrow \log_a b^c \\ \bullet \ (\log_a b = \log_a c \Rightarrow \log_a b^c \\ \bullet \ (\log_a b \otimes \log_a b^c \\ \bullet \ (\log_a b \otimes \log_a b^c \\ \bullet \ (\log_a b \otimes \log_a b^c \\ \bullet \ (\log_a b^c \otimes \log_a b^c \\ \bullet \ (\log_a b \otimes \log_a b^c \\ \bullet \ (\log_a b^c \otimes \log_a b^c \\ \bullet \ (\log_a b^c \otimes \log_a b^c) \\ \bullet \ (\log_a b^c \otimes \log_a b^c \\ \bullet \ (\log_a b^c \otimes \log_a b^c) \\ \bullet \ (\log_a b^c \otimes \log_a b^c \otimes \log_a b^c \\ \bullet \ (\log_a b^c \otimes \log_a b^c) \\ \bullet \ (\log_a b^c \otimes \log_a b^c \otimes \log_a b^c) \\ \bullet \ (\log_a b^c \otimes \log_a b^c \otimes \log_a b^c) \\ \bullet \ (\log_a b^c \otimes \log_a b^c \otimes \log_a b^c \otimes \log_a b^c) \\ \bullet \ (\log_a b^c \otimes \log_a b^c \otimes \log_a b^c \otimes \log_a$
Discriminant Completing The Square $ax^2 \pm bx + c = 0$ Max/Min Value Exponential and Logarithmic Functions Exponentials & Logarithm Rules' Transformations $a_f(bx + c) + d$ "anything in a bracket affects x	$\begin{array}{l} \bullet &= 0 \left(2 \mathrm{real repeated/double roots} \right) \\ \bullet &< 0 \left(\mathrm{no real roots} \right) \\ \hline & a \left(x \pm \frac{b}{2a} \right)^2 + c - \frac{b^2}{4a} \\ \hline & c - \frac{b^2}{4a} \\ \hline & c - \frac{b^2}{4a} \\ \hline & a^x = e^{x \ln a}, \\ \log_a a^x = x = a^{\log_a x} \\ \mathrm{where}, a, x > 0, a \neq 1 \\ \hline & c \log_a b \Leftrightarrow \log_a b^c \\ \hline & \log_a b = c \Leftrightarrow a^c = b, a, b, > 0, a \neq 1 \\ \hline & \log_a b = \log_a c \Leftrightarrow \log_a \frac{b}{c} \\ \hline & \log_a b = \log_a c \Leftrightarrow \log_a \frac{b}{c} \\ \hline & \log_a b \Rightarrow \log_a c \Leftrightarrow \log_a \frac{b}{c} \\ \hline & \log_a b \Rightarrow \log_a c \Leftrightarrow \log_a \frac{b}{c} \\ \hline & \log_a b \Rightarrow \log_a c \Rightarrow \log_a \frac{b}{c} \\ \hline & \log_a b \Rightarrow \log_a c \Rightarrow \log_a \frac{b}{c} \\ \hline & \log_a b \Rightarrow \log_a c \Rightarrow \log_a \frac{b}{c} \\ \hline & \log_a b \Rightarrow \log_a c \Rightarrow \log_a \frac{b}{c} \\ \hline & \log_a b \Rightarrow \log_a c \Rightarrow \log_a \frac{b}{c} \\ \hline & \log_a b \Rightarrow \log_a c \Rightarrow \log_a \frac{b}{c} \\ \hline & \log_a b \Rightarrow \log_a c \Rightarrow \log_a b \\ \hline & \log_a b \Rightarrow \log_a c \Rightarrow \log_a b \\ \hline & \log_a b \Rightarrow \log_a c \Rightarrow \log_a b \\ \hline & \log_a b \Rightarrow \log_a c \Rightarrow \log_a b \\ \hline & \log_a b \Rightarrow \log_a c \Rightarrow \log_a b \\ \hline & \log_a b \Rightarrow \log_a c \Rightarrow \log_a b \\ \hline & \log_a b \Rightarrow \log_a c \Rightarrow \log_a b \\ \hline & \log_a b \Rightarrow \log_a c \Rightarrow \log_a b \\ \hline & \log_a b \Rightarrow \log_a c \Rightarrow \log_a b \\ \hline & \log_a b \Rightarrow \log_a c \Rightarrow \log_a b \\ \hline & \log_a b \Rightarrow \log_a c \Rightarrow \log_a b \\ \hline & \log_a b \Rightarrow \log_a c \Rightarrow \log_a b \\ \hline & \log_a b \Rightarrow \log_a c \Rightarrow \log_a b \\ \hline & \log_a b \Rightarrow \log_a c \Rightarrow \log_a b \\ \hline & \log_a b \Rightarrow \log_a c \Rightarrow \log_a b \\ \hline & \log_a b \Rightarrow \log_a c \Rightarrow \log_a b \\ \hline & \log_a b \Rightarrow \log_a c \Rightarrow \log_a b \\ \hline & \log_a b \Rightarrow \log_a c \Rightarrow \log_a b \\ \hline & \log_a b \Rightarrow \log_a b \\ \hline & \log_a b \Rightarrow \log_a b \Rightarrow \log_a b \\ \hline & \log_a b \Rightarrow \log_a$
Discriminant Completing The Square $ax^2 \pm bx + c = 0$ Max/Min Value Exponential and Logarithmic Functions Exponentials & Logarithm Rules' Transformations af(bx + c) + d "anything in a bracket affects x	$\begin{array}{l} \bullet &= 0 \left(2 \mathrm{real\ repeated/double\ roots} \right) \\ \bullet &< 0 \left(\mathrm{no\ real\ roots} \right) \\ \hline & a \left(x \pm \frac{b}{2a} \right)^2 + c - \frac{b^2}{4a} \\ \hline & c - \frac{b^2}{4a} \\ \hline & c - \frac{b^2}{4a} \\ \hline & a^x = e^{x\ lna}, \\ \log_a a^x = x = a^{\log_a x} \\ \mathrm{where,\ a, x > 0, a \neq 1} \\ \hline & c\ \log_a b \Leftrightarrow \log_a b^c \\ \bullet \ \log_a b = c \Leftrightarrow a^c = b, a, b, > 0, a \neq 1 \\ \hline & \log_a b + \log_a c \Leftrightarrow \log_a b^c \\ \bullet \ \log_a b - \log_a c \Leftrightarrow \log_a b^c \\ \bullet \ \log_a b - \log_a c \Leftrightarrow \log_a b^c \\ \bullet \ \log_a b - \log_a c \Leftrightarrow \log_a b^c \\ \bullet \ \log_a b - \log_a c \Leftrightarrow \log_a b^c \\ \bullet \ \log_a b = \log_a c \Rightarrow \log_a b^c \\ \bullet \ \otimes \log_a b^c \\ \bullet \ \log_a b = \log_a c \Rightarrow \log_a b^c \\ \bullet \ \otimes \log_a b^c \\ \bullet \ $
Discriminant Completing The Square $ax^2 \pm bx + c = 0$ Max/Min Value Exponential and Logarithmic Functions Exponentials & Logarithm Rules' Transformations af(bx + c) + d "anything in a bracket affects x	$\begin{array}{l} \bullet &= 0 \left(2 \mathrm{real repeated/double roots} \right) \\ \bullet &< 0 \left(\mathrm{no real roots} \right) \\ \hline & a \left(x \pm \frac{b}{2a} \right)^2 + c - \frac{b^2}{4a} \\ \hline & c - \frac{b^2}{4a} \\ \hline & c - \frac{b^2}{4a} \\ \hline & a^x = e^{x \ln a}, \\ \log_a a^x = x = a^{\log_a x} \\ \mathrm{where}, a, x > 0, a \neq 1 \\ \hline & c \log_a b \Leftrightarrow \log_a b^c \\ \hline & \log_a b = c \Leftrightarrow a^c = b, a, b, > 0, a \neq 1 \\ \hline & \log_a b = \log_a c \Leftrightarrow \log_a \frac{b}{c} \\ \hline & \log_a b = \log_a c \Leftrightarrow \log_a \frac{b}{c} \\ \hline & \log_a b \Rightarrow \log_a c \Leftrightarrow \log_a \frac{b}{c} \\ \hline & \log_a b \Rightarrow \log_a c \Leftrightarrow \log_a \frac{b}{c} \\ \hline & \log_a b \Rightarrow \log_a c \Rightarrow \log_a \frac{b}{c} \\ \hline & \log_a b \Rightarrow \log_a c \Rightarrow \log_a \frac{b}{c} \\ \hline & \log_a b \Rightarrow \log_a c \Rightarrow \log_a \frac{b}{c} \\ \hline & \log_a b \Rightarrow \log_a c \Rightarrow \log_a \frac{b}{c} \\ \hline & \log_a b \Rightarrow \log_a c \Rightarrow \log_a \frac{b}{c} \\ \hline & \log_a b \Rightarrow \log_a c \Rightarrow \log_a \frac{b}{c} \\ \hline & \log_a b \Rightarrow \log_a c \Rightarrow \log_a b \\ \hline & \log_a b \Rightarrow \log_a c \Rightarrow \log_a b \\ \hline & \log_a b \Rightarrow \log_a c \Rightarrow \log_a b \\ \hline & \log_a b \Rightarrow \log_a c \Rightarrow \log_a b \\ \hline & \log_a b \Rightarrow \log_a c \Rightarrow \log_a b \\ \hline & \log_a b \Rightarrow \log_a c \Rightarrow \log_a b \\ \hline & \log_a b \Rightarrow \log_a c \Rightarrow \log_a b \\ \hline & \log_a b \Rightarrow \log_a c \Rightarrow \log_a b \\ \hline & \log_a b \Rightarrow \log_a c \Rightarrow \log_a b \\ \hline & \log_a b \Rightarrow \log_a c \Rightarrow \log_a b \\ \hline & \log_a b \Rightarrow \log_a c \Rightarrow \log_a b \\ \hline & \log_a b \Rightarrow \log_a c \Rightarrow \log_a b \\ \hline & \log_a b \Rightarrow \log_a c \Rightarrow \log_a b \\ \hline & \log_a b \Rightarrow \log_a c \Rightarrow \log_a b \\ \hline & \log_a b \Rightarrow \log_a c \Rightarrow \log_a b \\ \hline & \log_a b \Rightarrow \log_a c \Rightarrow \log_a b \\ \hline & \log_a b \Rightarrow \log_a c \Rightarrow \log_a b \\ \hline & \log_a b \Rightarrow \log_a c \Rightarrow \log_a b \\ \hline & \log_a b \Rightarrow \log_a b \\ \hline & \log_a b \Rightarrow \log_a b \Rightarrow \log_a b \\ \hline & \log_a b \Rightarrow \log_a$
Discriminant Completing The Square $ax^2 \pm bx + c = 0$ Max/Min Value Exponential and Logarithmic Functions Exponentials & Logarithm Rules' Transformations af(bx + c) + d "anything in a bracket affects x	$\begin{array}{l} \bullet &= 0 \left(2 \mathrm{real repeated/double roots} \right) \\ \bullet &< 0 \left(\mathrm{no real roots} \right) \\ \hline & a \left(x \pm \frac{b}{2a} \right)^2 + c - \frac{b^2}{4a} \\ \hline & c - \frac{b^2}{4a} \\ \hline & c - \frac{b^2}{4a} \\ a^x = e^{x \ln a}, \\ \log_a a^x = x = a^{\log_a x} \\ \mathrm{where}, a, x > 0, a \neq 1 \\ \hline & c \log_a b \in \log_a b^c \\ \bullet \log_a b = c \Leftrightarrow a^c = b, a, b, > 0, a \neq 1 \\ \hline & \log_a b + \log_a c \Leftrightarrow \log_a b^c \\ \bullet \log_a b - \log_a c \Leftrightarrow \log_a b^c \\ \hline & \log_a b + \log_a c \Leftrightarrow \log_a b^c \\ \hline & \log_a b + \log_a c \Leftrightarrow \log_a b^c \\ \hline & \log_a b = \log_a b^c \\ \hline & \log_a b = \log_a c \Leftrightarrow \log_a b^c \\ \hline & \log_a b = \log_a b^c \\ \hline & \log_a b^c \\ \hline & \log_a b = \log$

Trigonometry		
Sine Rule	Finding a side: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ Finding an angle: $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$	
Cosine Rule	inding a side: $a^2 = b^2 + c^2 - 2bc \cos A$	
	Finding an angle: $A = \cos^{-1}\left(\frac{b^2+c^2-a^2}{2bc}\right)$	
Area of Triangle	$\frac{1}{2}absinC$	
Degrees ↔ radians Small Angle Approximations	D to R: $\times \frac{\pi}{180}$ R to D: $\times \frac{180}{\pi}$ sin $\theta \approx \theta$	
Small Angle Approximations	$\cos\theta \approx 1 - \frac{\theta^2}{2}$	
Pythagorean identity 1	$\frac{\tan \theta \approx \theta}{\sin^2 x + \cos^2 x = 1}$	
Cofunction	$\cos x = \sin(90 - x)$	
Identity of tan x	$\sin x = \cos (90 - x)$	
	$\tan x = \frac{\sin x}{\cos x}$	
Vectors: 2D vectors $\begin{pmatrix} a \\ b \end{pmatrix}$ year 1 and 3D vectors $\begin{pmatrix} a \\ c \end{pmatrix}$ year 2		
Vector Form	$a\mathbf{i} + b\mathbf{j} + c\mathbf{k} \equiv \begin{pmatrix} a \\ b \\ c \end{pmatrix}$	
Properties	$ \begin{pmatrix} a \\ b \\ c \end{pmatrix} \pm \begin{pmatrix} d \\ e \\ f \end{pmatrix} = \begin{pmatrix} a \pm d \\ b \pm e \\ c \pm f \end{pmatrix} \qquad \qquad \lambda \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} \lambda a \\ \lambda b \\ \lambda c \end{pmatrix} $	
(addition/subtraction, multiplication and scalar		
product)	$\begin{pmatrix} a \\ b \\ c \end{pmatrix}, \begin{pmatrix} d \\ e \\ c \end{pmatrix} = ad + be + cf$	
Magnitude of a vector	(last formula not in syllabus but useful to know) $\left \begin{pmatrix} a \\ b \end{pmatrix} \right = \sqrt{a^2 + b^2 + c^2}$	
Unit Vector	$ \langle_c \rangle $	
	Unit vector of $\begin{pmatrix} a \\ b \end{pmatrix} = \frac{1}{\sqrt{a^2+b^2+c^2}} \begin{pmatrix} a \\ b \end{pmatrix}$ $\left(\frac{a+d}{2}, \frac{b+e}{2}, \frac{c+f}{2}\right)$	
Midpoint $of \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ and $\begin{pmatrix} d \\ e \\ f \end{pmatrix}$ Scalar Product		
(not in syllabus but useful to	$ \begin{pmatrix} a \\ b \\ c \end{pmatrix} \begin{pmatrix} d \\ e \\ f \end{pmatrix} = \begin{vmatrix} a \\ b \\ c \end{pmatrix} \begin{vmatrix} d \\ e \\ b \end{vmatrix} \begin{pmatrix} d \\ e \\ f \end{pmatrix} \mid \cos \theta $	
know)	where, θ is the angle between $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$ and $\begin{pmatrix} d \\ e \\ f \end{pmatrix}$	
Angle Between 2 vectors	$a = \cos^{-1} \begin{pmatrix} {a \atop b} \\ {c \atop b} \end{pmatrix} \begin{pmatrix} a \\ {e \atop f} \end{pmatrix}$	
This is just a re-arrangement of above.	$\theta = \cos^{-1} \left(\frac{ \binom{\widetilde{c}}{c} \binom{\widetilde{c}}{f}}{\binom{d}{c} \binom{d}{f}} \right)$	
(not in syllabus but useful to know)		
Vector Equation of a line (not in syllabus but useful to	$r = \begin{pmatrix} a \\ b \\ c \end{pmatrix} + \lambda \begin{pmatrix} d \\ e \\ f \end{pmatrix}$	
know)	ability and Statistics	
Mean	bability and Statistics If no frequency: $\bar{x} = \frac{\sum x}{n}$, If frequency: $\bar{x} = \frac{\sum fx}{\sum f}$	
Variance	If no frequency: $\sigma^2 = \frac{\Sigma x^2}{2} - \overline{x}^2 = \frac{\Sigma (x-\mu)^2}{2}$	
	If frequency: $\sigma^2 = \frac{\sum f x^2}{\sum f} - \bar{x}^2 = \frac{\sum f (x-\mu)^2}{\sum x r}$	
Standard Deviation	Note: can also use the formula $\frac{s_{xx}}{n}$ $\sigma = \sqrt{variance}$	
Standard Deviation s _{xx}	$\sum (x_i - \bar{x})^2 = \sum x_i^2 - \frac{(\sum x_i)^2}{2}$	
Probability of event A	$\sum(x_i - \bar{x})^2 = \sum x_i^2 - \frac{(\sum x_i)^2}{n}$ $P(A) = \frac{n(A)}{n(U)} = \frac{number of f avourable outcomes}{number of possible outcomes}$	
Complementary Events	P(A)=1-P(A) i.e. probabilities add to 1	
Combined Events (Addition Rule) Mutually Exclusive Events	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $P(A \cap B) = 0$	
Independent Events	Addition rule becomes: $P(A \cup B) = P(A) + P(B)$ $P(A \cap B) = P(A)P(B)$	
	Addition rule becomes: $P(A\cup B)=P(A)+P(B)-P(A)P(B)$ To find whether independent: Find $P(A)$, $P(B)$ and	
	$P(A \cap B)$ and see whether the former 2 multiply to make the latter or show that $P(A B) = P(A)$	
Binomial Distribution Binompd (=)	$x \sim B(n, p)$ E(X)=Mean= np , Var(X)= $np(1-p)$	
Binomcd (≤)	$P(X = x) = \binom{n}{x} p^x (1-p)^x$ $IQR = Q_3 - Q_1$	
Interquartile Range Outliers	Any values	
Calculus (Dif	> UQ + 1.5(IQR) or $<$ LQ - 1.5(IQR) ferentiation and Integration)	
Turning/Stationary Points (Max/Min)	Solve $\frac{dy}{dx} = 0$	
Proving whether Max/Min	If $\frac{d^2y}{dx^2} > 0$ min and $\frac{d^2y}{dx^2} < 0$ max	
Points of Inflection	Or can do sign change test for $\frac{dy}{dx}$ using number line solve $\frac{d^2y}{dx} = 0$	
Increasing/Decreasing	dx^2 To find where Increasing: solve $\frac{dy}{dx} > 0$	
(use number line to solve) Convex/Concave	To find where decreasing: solve $\frac{dy}{dx} < 0$ To find where concave up/convex: solve $\frac{d^2y}{dx^2} > 0$	
(use number line to solve)	To find where concave down/concave: solve $\frac{d^2y}{dx^2} < 0$ $y - y_1 = m(x - x_1)$	
Tangents and Normals Implicit	Differentiate to get m (tangent means \parallel , Normal means \perp)	
Area between	"every time we differentiate a y we write $\frac{dy}{dx}$ " curve & x axis: $\int_{x=a}^{x=b} y dx$ curve & y axis: $\int_{y=a}^{y=b} x dy$	
	(take + answer if neg) Between 2 curves: $\int_{x=a}^{x=b}$ (top curve-bottom curve) dx	
Differentiation 1 st Principles	Remember to split up if separate areas $\frac{dy}{dx} = f'(x) = \lim_{h \to \infty} \frac{f(x+h) - f(x)}{h}$	
Chain Rule	$y = a(y)$ $y = f(x) \rightarrow \frac{dy}{dy} = \frac{dy}{dy} \frac{du}{dy}$	
Product Rule	$y = uv \Rightarrow \frac{dy}{dv} = u \frac{dv}{dv} + v \frac{du}{dv}$	
Quotient rule	$y = \frac{u}{v} \Rightarrow \frac{dx}{dx} = \frac{dx}{v} + \frac{dx}{dx}$ $y = \frac{u}{v} \Rightarrow \frac{dx}{dx} = \frac{v}{v} + \frac{du}{dx} + \frac{dv}{dx}$ $\frac{dv}{dx} = \frac{v}{v^2}$	
Derivatives	$x \rightarrow nx$	
Integrals	$\int x^n dx = \frac{x^{n+1}}{n+1} + c, n \neq -1$	

www.mymathscloud.com

AS Maths Formulae Sheet